更三高考订阅页

复数写成e的指数形式

Ai高考 · 高中学习
2023-03-14
更三高考院校库

e^(iθ)=isinθ+cosθ。指数形式是e^(iθ),e为自然对数的底,θ为一个辐角,i为虚数单位。复数是由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

复数写成e的指数形式

复数的指数形式

复数指数形式:e^(iθ)=isinθ+cosθ。

证明方法就是把e^(iθ)和sinθ,cosθ展开成无穷级数。

将复数化为三角表示式和指数表示式是:复数z=a+bi有三角表示式z=rcosθ+irsinθ,可以化为指数表示式z=r*exp(iθ)。

exp()为自然对数的底e的指数函数。即:exp(iθ)=cosθ+isinθ。证明可以通过幂级数展开或对函数两端积分得到,是复变函数的基本公式。

复数有多种表示形式:代数形式、三角形式和指数形式等。

代数形式:z=a+bi,a和b都是实数,a叫做复数的实部,b叫做复数的虚部,i是虚数单位,i^2=-1。

三角形式:z=r(cosθ+isinθ)。r=√(a^2+b^2),是复数的模(即绝对值),θ是以x轴为始边,射线OZ为终边的角,叫做复数的辐角,辐角的主值记作arg(z)。

2023高考备考攻略

高考资讯推荐

高中学习

【高中学习网】提供高中学习资料,高中学习方法,高中学习技巧, ... [进入专栏]

报考信息

动态简章计划录取分数